Community engagement in innovation at PLOS

Joseph Brown
Senior Editorial Manager
PLOS
May 4, 2016
PLOS Core Principles

- Published research articles should be **openly available to everyone without restriction**, for the **advancement of science** and the **greater public good**

- All **properly executed science deserves publication**

- All **data** underlying conclusions must be provided to facilitate reproducibility

- To advance science, we must provide **innovative and forward-looking solutions** that **remove barriers** to scientific communication

- As a nonprofit, we **reinvest revenues in improving the experience of research**
Authors, reviewers, and editors are why we do what we do

How does it speed up the process for our authors?

How does it make it less difficult for everybody?

How does it remove barriers?

How does it leave more time for research, teaching and science?

How does it keep costs down for researchers and their funders?
Aperta is a manuscript submission and peer review system in development by PLOS that will streamline the publishing experience for authors, editors and reviewers.
Welcome to Aperta
Submit & manage manuscripts.

Sign in with PLOS
Create an account
Short title: Genome-wide Association Studies of the Human Gut Microbiota

Emily R. Davenport, Darren A. Cusanovich, Katelyn Michelini, Luis B. Barreiro, Carole Ober, and Yoav Gilad

1Department of Human Genetics, University of Chicago, Chicago, IL, USA

2Department of Pediatrics, Saint Justine Hospital Research Centre, Montreal, Canada

#Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA

#Present address: Department of Genome Sciences, University of Washington, Seattle, WA, USA

*Correspondence: c-ober@genetics.uchicago.edu (C.O.), gilad@uchicago.edu (Y.G.)

Abstract

The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLDI, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10^{-7}). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

Introduction

Humans have complex interactions with the bacteria that live in and on their bodies, referred to as the microbiota[1]. Alterations in the microbiota, particularly in the gut, have been linked to variation in risk for obesity[2-4], celiac disease[5], Crohn's disease[6, 7], ulcerative colitis[8-11], gastroenteritis[12], asthma[13], and inflammatory bowel disease[14, 15].
We have also been actively engaging our researcher community

- Initial fact-finding interviews
- Researchers invited to office for in-person usability testing and mock-ups
- UX staff making lab visits in California bay area
- User experience testing with live users on dummy manuscripts
- Finger-on-the-pulse questioning, “Project Baseline”
- Annual author surveys
We have also been actively engaging our researcher community

- User experience testing with live users on dummy manuscripts
 - Volunteer researchers acting as authors and submitting to the journal sites
 - External users completing reviews
 - Staff users processing checks, assignment, and review as realistically as possible
We have also been actively engaging our researcher community

• User experience testing with live users on dummy manuscripts
 • Prepared files and provided documentation
 • Submit feedback button
 • Journal office contact in case stuck
 • UX shadowing and screen sharing
 • Debriefs and final feedback interviews
An improved test for detecting multiplicative homeostatic synaptic scaling

Jimok Kim1,2*, Richard W. Tsien2* and Bradley E. Alger3

1. Institute of Molecular Medicine and Genetics, Graduate Program in Neuroscience and Department of Neurology, Georgia Health Sciences University, Augusta, GA 30912
2. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
3. Department of Physiology, Psychiatry and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201

Current address: Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912

* Current address: New York University Institute of Neuroscience, New York University, New York, New York 10016

* Corresponding author: jmkim@georgiahealth.edu, phone 706-721-1371, fax 706-721-8752

Funding: This work was supported by grants R01AG036704 to J.K., B37MH071760 to R.W.T. and R01DA014625 to B.E.A. from the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ABSTRACT

Homeostatic scaling of synaptic strengths is essential for maintenance of network “gain”, but also poses a risk of losing the distinctions among relative synaptic weights, which are possibly cellular correlates of memory storage. Multiplicative scaling of all synapses has been proposed as a mechanism that would preserve the relative weights among them, because they would all be proportionately adjusted. It is crucial for this hypothesis that all synapses be affected identically, but whether or not this actually occurs is difficult to determine directly. Mathematical tests for multiplicative synaptic scaling are presently carried out on distributions of miniature synaptic current amplitudes, but the accuracy of the test procedure has not been fully validated. We now show that the existence of an amplitude threshold for empirical detection of miniature synaptic...
Is “Huh?” a Universal Word? Conversational Infrastructure and the Convergent Evolution of Linguistic Items

Abstract

A word like Huh?—used as a repair initiator when, for example, one has not clearly heard what someone just said—is found in roughly the same form and function in spoken languages across the globe. We investigate it in naturally occurring conversations in ten languages and present evidence and arguments for two distinct claims: that Huh? is universal, and that it is a word. In support of the first, we show that the similarities in form and function of this interjection across languages are much greater than expected by chance. In support of the second claim we show that it is a lexical, conventionalised form that has to be learnt, unlike grunts or emotional cries. We discuss possible reasons for the cross-linguistic similarity and propose an account in terms of convergent evolution. Huh? is a universal word not because it is innate but because it is shaped by selective pressures in an interactional environment that all languages share: that of other-initiated repair. Our proposal enhances evolutionary models of language change by suggesting that conversational infrastructure can drive the convergent cultural evolution of linguistic items.

Introduction

A fundamental tenet of linguistic science is that the sound of a word has a purely arbitrary connection to the word’s meaning [1], [2]. Thus, the sound of the word dog in English is connected to the concept ‘dog’ by historical accident and not by any natural connection; roughly the same concept is just as well denoted in French by chien, in German by hund, and in Japanese by imo. But it is not that a word can have just any vocal sound. While the possibility space for sound systems of the world’s language is enormous, any given language makes use of only a restricted portion of the possible sounds [3], [4]. It follows from these two basic principles—the ‘arbitrariness of the sign’, and the ‘selectiveness of particular sound systems’—that the words that exist in the world’s languages should sound quite different from each other, and that the likelihood that there are universal words is extremely small. But in this study we present a striking
...and very little

Short title: Genome-wide Association Studies of the Human Gut Microbiota

Emily R. Davenport¹✉, Darren A. Cusanovich¹✉, Katelyn Michelin³, Luis B. Barreiro², Carole Ober³✉, and Yoav Gilad³✉

¹Department of Human Genetics, University of Chicago, Chicago, IL, USA
²Department of Pediatrics, Saint Justine Hospital Research Centre, Montreal, Canada
³Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
⁴Present address: Department of Genome Sciences, University of Washington, Seattle, WA, USA

*Correspondence: c-oberr@genetics.uchicago.edu (C.O.), gilad@uchicago.edu (Y.G.)

Abstract

The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, diminishing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLDI, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10⁻⁷). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

Introduction

Humans have complex interactions with the bacteria that live in and on their bodies, referred to as the microbiota[1]. Alterations in the microbiota, particularly in the gut, have been linked to variation in risk for obesity[2–4], celiac disease[5], Crohn's disease[6, 7], ulcerative colitis[8–11], gastroenteritis[12], asthma[13], and inflammatory bowel disease[14, 15].
So what did we learn?
Is “Huh?” a Universal Word? Conversational Infrastructure and the Convergent Evolution of Linguistic Items

Abstract

A word like Huh?—used as a repair initiator when, for example, one has not clearly heard what someone just said—is found in roughly the same form and function in spoken languages across the globe. We investigate it in naturally occurring conversations in ten languages and present evidence and arguments for two distinct claims: that Huh? is universal, and that it is a word. In support of the first, we show that the similarities in form and function of this interjection across languages are much greater than expected by chance. In support of the second claim we show that it is a lexical, conventionalised form that has to be learnt, unlike grunts or emotional cries. We discuss possible reasons for the cross-linguistic similarity and propose an account in terms of convergent evolution. Huh? is a universal word not because it is innate but because it is shaped by selective pressures in an interactional environment that all languages share: that of other-initiated repair. Our proposal enhances evolutionary models of language change by suggesting that conversational infrastructure can drive the convergent cultural evolution of linguistic items.

Introduction

A fundamental tenet of linguistic science is that the sound of a word has a purely arbitrary connection to the word’s meaning [1], [2]. Thus, the sound of the word dog in English is connected to the concept ‘dog’ by historical accident and not by any natural connection; roughly the same concept is just as well denoted in French by chien, in German by hund, and in Japanese by imo. But it is not that a word can have just any vocal sound. While the possibility space for sound systems of the world’s language is enormous, any given language makes use of only a restricted portion of the possible sounds [3], [4]. It follows from these two basic principles—the ‘arbitrariness of the sign’, and the ‘selectiveness of particular sound systems’—that the words that exist in the world’s languages should sound quite different from each other, and that the likelihood that there are universal words is extremely small. But in this study we present a striking
Type your manuscript title here
Short title: Genome-wide Association Studies of the Human Gut Microbiota

Emily R. Davenport¹,²*, Darren A. Cusanovich¹, Katelyn Michelin³, Luis B. Barreiro², Carole Ober¹,*, and Yoav Gilad¹,*

¹Department of Human Genetics, University of Chicago, Chicago, IL, USA
²Department of Pediatrics, Saint Justine Hospital Research Centre, Montreal, Canada
³Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
⁴Present address: Department of Genome Sciences, University of Washington, Seattle, WA, USA

*Correspondence: c-ober@genetics.uchicago.edu (C.O.), gilad@uchicago.edu (Y.G.)

Abstract

The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLDI, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10⁻⁷). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

Introduction

Humans have complex interactions with the bacteria that live in and on their bodies, referred to as the microbiota[1]. Alterations in the microbiota, particularly in the gut, have been linked to variation in risk for obesity[2–4], celiac disease[5], Crohn's disease[6, 7], ulcerative colitis[8–11], gastroenteritis[12], asthma[13], and inflammatory bowel disease[14, 15].
Please confirm that your figures comply with our guidelines for preparation and have not been inappropriately manipulated. For information on image manipulation, please see our general guidance notes on image manipulation.

☑ Yes - I confirm our figures comply with the guidelines.
Full title: Genome-wide Association Studies of the Human Gut Microbiota

Short title: Genome-wide Association Studies of the Human Gut Microbiota

Emily R. Davenport1,2,*, Darren A. Cusanovich1,3,*, Katelyn Michelin1, Luis B. Barreiro2, Carole Ober1,4,*, and Yoav Giladi1,5,6

1Department of Human Genetics, University of Chicago, Chicago, IL, USA
2Department of Pediatrics, Saint Justine Hospital Research Centre, Montreal, Canada
3Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
4Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
5Present address: Department of Genome Sciences, University of Washington, Seattle, WA, USA
6Correspondence: cober@genetics.uchicago.edu (C.O.), gilad@uchicago.edu (Y.G.)

Abstract

The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the...
Short title: Genome-wide Association Studies of the Human Gut Microbiota

Emily R. Davenport1,#,a, Darren A. Cusanovich1,#b, Katelyn Michelinii, Luis B. Barreiro2, Carole Ober1,*, and Yoav Gilad1,*

1Department of Human Genetics, University of Chicago, Chicago, IL, USA
2Department of Pediatrics, Saint Justine Hospital Research Centre, Montreal, Canada
#Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
*Correspondence: c-ober@genetics.uchicago.edu (C.O.), gilad@uchicago.edu (Y.G.)

Abstract

The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactobacillus, rs3747113, P = 3.13 x 10^-7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

Introduction

Humans have complex interactions with the bacteria that live in and on their bodies, referred to as the microbiota[1]. Alterations in the microbiota, particularly in the gut, have been linked to variation in risk for obesity[2-4], celiac disease[5], Crohn’s disease[6, 7], ulcerative colitis[8–11], gastroenteritis[12], asthma[13], and inflammatory bowel disease[14, 15]. Therefore,
<table>
<thead>
<tr>
<th>Submission</th>
<th>Tech Check</th>
<th>Internal Review</th>
<th>External Review</th>
<th>Make Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supporting Info</td>
<td>Initial Tech Check</td>
<td>Assign Team</td>
<td>Invite Reviewers</td>
<td>Register Decision</td>
</tr>
<tr>
<td>Authors</td>
<td>Revision Tech Check</td>
<td>Editor Discussion</td>
<td>Academic Editor Feedback</td>
<td></td>
</tr>
<tr>
<td>Upload Manuscript</td>
<td>Final Tech Check</td>
<td></td>
<td></td>
<td>ADD NEW CARD</td>
</tr>
<tr>
<td>Billing</td>
<td></td>
<td>ADD NEW CARD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competing Interests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover Letter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethics Statement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Disclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Submission</td>
<td>Initial Triage</td>
<td>Full Submission</td>
<td>Tech Checks</td>
<td>Peer Review</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>✔️ Upload Manuscript</td>
<td>✔️ Assign Team</td>
<td>✔️ Authors</td>
<td>✔️ Initial Tech Check</td>
<td>✔️ Invite Reviewers</td>
</tr>
<tr>
<td>✔️ Cover Letter</td>
<td>✔️ Initial Decision</td>
<td>✔️ Competing Interests</td>
<td>✔️ Revision Tech Check</td>
<td>✔️ Reviewer Tracking and Chasing</td>
</tr>
<tr>
<td>✔️ Figures</td>
<td>✔️ Invite Academic Editor</td>
<td>✔️ Billing</td>
<td>✔️ Final Tech Check</td>
<td>✔️ Reviewer Letters</td>
</tr>
<tr>
<td>✔️ Supporting Info</td>
<td>✔️ Data Availability</td>
<td>✔️ Ethics Statement</td>
<td>✔️ Author Letters</td>
<td>✔️ Reviewer Letters</td>
</tr>
<tr>
<td>✔️ Additional Information</td>
<td>✔️ Financial Disclosure</td>
<td>✔️ New Taxon</td>
<td>✔️ Changes For Author</td>
<td>✔️ ```</td>
</tr>
<tr>
<td>✔️ AE Letters</td>
<td>✔️ Reporting Guidelines</td>
<td>✔️ Figures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When tasks are complete – the submit button appears.
Congratulations

You have successfully submitted your manuscript for initial review. If the initial review is favorable, we will invite you to add some information to facilitate peer review.

Initial Submission
Submit your article along with cover letter, supporting information, and figures.

PLOS Initial Evaluation
PLOS editors will evaluate your submission. If they decide to send your manuscript to peer reviewers, you might be invited to add some additional information.

Preparation for Peer Review
You will be asked for some additional information such as full author list and competing interests statements, to get your manuscript ready for peer review.

The human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, is plays in dictating the composition of bacteria living in the gut. In this study, we examined the types with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, to an 82 minute age 57 individuals collected in both. These individuals live and
Congratulations

You've successfully submitted your paper!
Thank you!

email Joseph Brown at jbrown@plos.org