The research community at the heart of publishing

Michaela Torkar PhD
Editorial Director, F1000Research
michaela.torkar@f1000.com
End of the road for traditional publishing

(sharing research findings & data)

Dissemination of information has changed, but the publishing processes have remained largely the same.

Editors and referees as gatekeepers of what research can be shared.

Problems with traditional journal publishing process:

- Delays
- Lack of transparency
- Lack of reproducibility
- Publication bias
- Research waste
New horizons for scholarly ‘publishing’

(share research findings & data)

Research is being shared, used and re-used in new ways

Beyond articles (and journals)

Technology and digital infrastructure are facilitators

Opportunity for publishers to operate in new ways

New models allow the research community to take a central role: preprints; post-publication peer review
An open science publishing platform for life scientists:

- Open access
- Open peer review
- Open methodology
- Open data

Key aims:

- Unrestricted and immediate access to new findings, incl. reanalyses, confirmatory and negative results (reduced waste/less publication bias)
- Transparency increases research integrity
- Better reproducibility through data sharing
• Peer review *after* publication (no ‘Editor’, but in-house pre-pub checks, incl. data inclusion)

• Fully transparent peer review

• Open data policy

• “living articles”: **Versioning** (also in PubMed) for revisions, corrections, updates
Open peer review: transparency

Abstract

Background: Bacterial pathogens can manipulate or subvert host tissue cells to their advantage at different stages during infection, from initial colonization in primary host niches to dissemination. Recently, we have shown that *Mycobacterium leprae* (ML), the causative agent of human leprosy, reprogrammed its preferred host niche de-differentiated adult Schwann cells to progenitor/stem cell-like cells (pSLCs) which appear to facilitate bacterial spread. Here, we studied how this cell fate change influences bacterial retention and transfer properties of Schwann cells before and after reprogramming.

Results: Mammalian fibroblasts as host cells are deficient in non-reprogrammed Schwann cells, possess high bacterial retention properties and transfer bacteria to fibroblasts. In contrast, pSLCs, which are derived from non-reprogrammed Schwann cells, efficiently transferred bacteria to fibroblasts. We propose that such changes in reprogramming, efficiently transferred bacteria to fibroblasts. There are only three technical points I think that authors could consider in this work, to unambiguously claim that the putative cell-to-cell transfer mechanism is an apoplastic, non-lytic one:

1. The authors stated as data not shown that there is no evidence of bacteria in supernatants. It would be important to show this information and indicate in the methods how it was performed.
2. The authors mentioned that they could not detect any apoptotic GFF+ pSLC debris. It would be necessary to show these experiments as well, to exclude e.g. efflux or lysis. They should indicate in the methods how apoptosis was detected (markers, staining, etc.).
3. The bacterial transfer to fibroblasts is measured primarily by detection of one lipid, PGL-1. It is known that lipids from *M. tuberculosis* can be transferred from infected cells to bystander cells (Beatty WL et al., 2000). I understand that...
Referees are named

View count shows how many people read the referee report

Referee reports are citable with a DOI

Referee reports and author comments are visible to anyone
Referee Scores:

- Approved
- Approved with reservations
- Not approved

Articles with sufficient positive evaluations are indexed in PubMed, Scopus, and Embase.

- Approved
- Approved
- ?
- ?

or

Minimal requirements for indexing

Articles that haven’t yet reached this threshold can be revised and re-reviewed (no time limit).
Author-led publishing and versioning

Authors can decide to amend their article in response to referee or community feedback.

Authors can update their article following minor developments (e.g. software updates).

- Corrections are made through new versions.
- Each version is independently citable yet linked.
- All versions indexed in PubMed, PubMed Central, etc (if article passed review).
- ‘Track’ option.
New horizons for scholarly publishing:

Redefining the role and function of publishers
Wellcome Open Research

Wellcome Open Research provides all Wellcome researchers with a place to rapidly publish any results they think are worth sharing.

Read more in our press release

Coming soon.

Stay updated
What is Wellcome Open Research?

An open science publishing platform where Wellcome-funded researchers can publish *any* research they consider worth sharing.

Key features resemble F1000Research:
- Publishing model
- Open, post-publication peer review
- Open data
- Different research outputs
- Big and small findings, novel and confirmatory results etc.

Wellcome owns and fully controls the platform. Editorial and publishing processes provided by F1000. Article-processing charges centrally covered by Wellcome.

http://wellcomeopenresearch.org
michaela.torkar@f1000.com